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It is shown how, based on the history of the development of the theory of gravitation, one can state and effectively solve problems 
in the mechanics of ~ e  motion of a system of individually defined bodies, not in contact with one another, but interacting with 
mass forces. The theory is constructed using a model system of singular points which possess (in non-holonomieally defined 
comoving Fermi coordinates) proper time, masses, thermodynamic and potential energies and constant angular momenta, and 
are embedded in Minkowski four-space. The appropriate eomoving metrics and equations of motion for these points in Fermi 
coordinates are written down directly. To obtain the laws of motion from the standpoint of given observers one must use algorithms 
of calculations in the theory of inertial navigation in Riemalmian spaces, as developed and published by the author. © 1996 Elsevier 
Science Ltd. All right~ reserved. 

In special relativiVy theory (SRT) one postulates a globally four-dimensional Minkowski space, while 
in general relativity theory (GRT) one essentially postulates the validity of the metric of SRT only along 
the coordinate lines L of proper time x for individual points with elementary masses dm.  Concerning 
these points, one postulates in the theory of"pure gravitational phenomena" that d m  = const and that 
changes in d m  owing to radiation or due to adhesion or separation of bodies are not taken into account 
during the motion; the interaction of different elements d m  owing to contacts (internal stresses and, 
in particular, pressures) is also not taken into account. One can formulate problems in which all the 
interactions just listed, as well as interactions of other types, are modelled and taken into considera- 
tion in GRT. However, a (Newtonian) theory of gravitation in both GRT and SRT can be constructed 
taking into account only interactions of moving individual point masses and the geometric properties 

1 2 of four-dimensional continua of geometrical points with coordinates ~ ,  ~ ,  ~a, x of pseudo-Riemannian 
spaces with signature - - - +, for which the distances ds between any infinitesimally close points may 
be defined by a metric form of the type [1] 

d$2 = c2d'c2 + 2ga4 (~V' x)d~adx + gal3 (~', x)d~ad~ p (1) 

7,~, ~=  1 ,2 ,3  

where c is a fixed empirical scalar constant, given as a characteristic of the pseudo-Riemannian 
1 2 3 space, the numbers ~ ~ ~ ,  ~ are the coordinates (names) of individual points, and the time coordinate 

x is a model proper time on the trajectory L(~r), measured in hours, of individual points fastened with 
model coordinates ~a = const (L) for d~ ~ = 0 on L. 

For a fixed space, the metric in (1) is not uniquely defined. It is easy to see that under any trans- 
formation of the following type [2] 

11 ~ = tpa(~ r) and x' = x + f~(~v) when dx' = dx on L (2) 

the metric (1) pres, zrves its form and that all invariant characteristics of the space geometry retain their 
values. In particular, the coordinate lines L are preserved with invariant values of the variables x, except 
for displacement along L of the origin of the proper time on lines L. 

At each point along lines L one can introduce an invariantly defined vector of absolute four- 
dimensional velocity u and acceleration a as derivatives with respect to the variable x along trajectories 
of individual points with (~z) = const(L) 

u = ds /dx  = c, a = du/d'c (3) 
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The vector u always points along the tangent to the corresponding four-dimensional trajectory L. 
In the metric (1) for individual points, the acceleration vector a along a line L is always perpendicular 

to the four-dimensional velocity u, since I u I = c is a constant. 
With every point of a line L one can associate a local tetrad reference system with vectors 9k, in which 

the basis vector 9 4 = U points along the tangent to L and, since 

du ~ t ~ g p 4  ~ p  C 

~4 = gp4 ~p, a dz . . . .  t , - - ~ ' - ' - , . . , ,  + , . ,  gk4~4 3p= 

~- d- = C - - ~ " - -  ,.7 

because u v = cgp4, u = up9 p, it follows that the acceleration in the comoving coordinate system is given 
by [2] 

a a = c 3 g a 4 ( ~ a , x ) 1 3 x ,  a 4 =0 (4) 

It is obvious that the components of the metric g ~ ( ~ ,  x) do not affect the magnitude of the vector 
a, since, under transformations (2), the components of the acceleration in variables ~a, x' are defined 
by the following formulae [2] 

a s  = asO~S/Orl a, a4 = 0 (5) 

On different coordinate lines L, non-holonomic transformations can be used to introduce Fermi 
coordinates x ,  x in which formulae (4) will be valid after transformations, with the sole difference that 

0~ .tL the variables ~ will be replaced b yx . These coordinates may be considered as different corresponding 
Cartesian coordinates with corresponding different constant values on the lines L, and the transformed 

7 components g'al~(X, x) are also represented non-holonomically in terms of them. 
Thus, for each value of the coordinate x and each corresponding law of motion defined by the values 

ofx ~, I:" in the components g'~(x v, x') and in the components of metrics g'a~(x ~, x ' )  obtained on the lines 
L, one can consider a locally defined and essentially global corresponding pseudo-Riemannian space. 

The model construction just described, with different values of the constant x ~ on different laws of 
motion, conforming to coordinate lines L for global time x and corresponding accelerations a, can be 
supplemented by fixed components of the three-dimensional metric~[l(x, x). In this way one can single 
out non-holonomic corresponding pseudo-Riemannian spaces S with given acceleration fields of 
gravitational forces in a system of Fermi coordinates x ~, z on a distinguished, generally arbitrary family 
of lines L for the scalar global variable x. 

To specify the acceleration field, one must rely on the formulation of model conditions correspond- 
ing to observations and experiments, which generate the form of the family of lines L and of the corres- 
ponding pseudo-Riemannian space. 

To determine the coordinate lines L, one should use model mechanisms of the realization of the 
weightlessness observed in the theory of gravitation in motions of all the small individual masses. 

Weightlessness of moving bodies is due to the balance of forces proportional to the masses at all the 
individual points of the bodies. In the theory of gravitation these are model attractive forces, forces 
balanced by inertial forces, or simply inertial motions when there are no interactions between the various 
sets of points made up of the moving individuals. 

The basic characteristic examples of balances are associated with the universal local equation of 
mechanics for motion of a small body in vacuum 

P - m a  = 0 ( 6 )  

where P is a quantity proportional to the mass of the small body, m is the mass and a is the acceleration 
relative to the inertial tetrad dxldxZdx 3, dx. 

Equations (6) are locally universal both in the Newtonian theory of motion in three-dimensional 
Euclidean space using synchronized absolute time, and in curved Riemannian spaces, in which local 
relations, in particular Eq. (6), are postulated for identical P, a and m, which is possible and natural in 
Riemannian spaces. 

In Eq. (6) the balance of forces may be treated in Newton's sense, as an equilibrium under the action 
of two non-zero forces: a gravitational force P ~ 0 and an inertial force - m a  ~: O, and the balance of 



The theory of gravitation in special relativity 3 

these forces at all individual points yield weightlessness. (The explanation of the phenomenon of 
weightlessness for P ~ 0 and a ~ 0 in the Newtonian theory may be confirmed in experiments using 
inertial instruments mounted on moving bodies.) 

In GRT weightlessness is treated as the absence of a gravitational force (P = 0) for points freely 
moving in a gravitational field, and there should therefore be no acceleration: a = 0. Thus, weightlessness 
is the absence of a gravitational force in free motion (provided the gravitational theory involves no other 
external forces or internal stresses). In GRT all the individual masses cause the acceleration a to vanish 
along each line L, while there is no conservation of the gravitational force (P ~ 0), and this yields 
weightlessness in GRT. 

In GRT all Ls are "straight lines" and the motion takes place along geodesics; but in the Newtonian 
theory when motion takes place weight is balanced by the inertial force, as a result of which the pheno- 
menon of weightlessness occurs in the Newtonian theory also. 

Using formulae (2) and (4) in GRT in the metric (1) we obtain 

3g, d3x = o (7) 

and consequentlyga4 = gct4(~ tx) and formula (1) becomes, in the comoving global system of coordinates 

ds 2 = c2d,~2 + 2got 4 (~'t)d~(Xd~ + got~ (~Y, 'l~)d~Ctd~ I~ (8) 

If the acceleration vectors a according to (4) are not zero, one can write for the corresponding 
trajectories, for ~trbitrary d~ a 

- • - - •  (2ga4  (~ ~' ,'l:')d~'d't = 2aad~ad'c = -2dUd'c ~ 0 
c 

(9) 

If ~1, g2, ~3 are regarded as coordinates of individual points with masses dm, then, in accordance with 
the transformation (2), one can write down a local formula for the elementary work performed in 
variational or real displacements of individual points [2] 

dmaad~ °~ = dmah drl a = dmacxdx ~ = -dmd  U (10) 

where dU = -a~ tx  a in Fermi variables. 
The right-hand side of (10) may be regarded as the increment of elementary energy dmdU due to 

an increment in the coordinates d~ a or drl a or dx a. Accordingly, the scalar quantity dU may be considered 
as the increment of energy density. 

In the Newtonian theory of gravitation the infinitesimal scalar dU is the increment of the potential 
energy density, which is uniquely defined by a function mU(x v) which depends only on the Fermi 
coordinates x r, while Eq. (10) serves as the definition of the total differential for dU(xV). 

It has been shown [3] that, in terms of Fermi variables, the components of the absolute acceleration 
as kinematically ~a the Newtonian sense and in SRT in comoving coordinates are identical. This obviously 
follows from the fact that they are the same in comoving coordinates at the points of arbitrary coordinate 
lines of x, which '.are denoted by L. 

This situation obviously remains valid locally and in pseudo-Riemannian spaces in comoving 
coordinates, and therefore the small quantity dU is a total differential in SRT and in' GRTt 

Hence it follows that in comoving coordinates the following fundamental kinematic equations of 
celestial mechanics must hold in Fermi variables 

3U I dx=O, maa(x ~t)=-mc~U(x~)13x a (11) 

tThe fact that the flmction U is constant along L is proved by kinematic arguments, as follows. The four-dimensional velocity 
u points along the tangent to L, the vector a points along the normal, since along L the acceleration a and ds on L are perpendicular 
and consequently ads~ = 0 = --d'U on L. Hence, the uniqueness of the scalar functions U(~ 1, ~2, ~3) or U(xlx2x3), defined locally 
on L in non-holonomically introduced Fermi coordinates, implies the existence of a scalar potential for the acceleration 
vector a. 
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Equations (11) may also be derived independently in local inertial frames of reference as dynamical 
equations [4], if one stipulates that in the energy balance equations of the individual masses a potential 
energy appears that depends only on the coordinates x a or ~a. 

One should also remember that the potential energy depends only on the coordinates of the individual 
points of a system of moving masses for conservative systems in comoving coordinates x v or ~v, when 
the relative velocity is zero, as follows directly from the energy equation. 

Relationships (4) and Eqs (11)yield 

% = c~got 4 / O'c = - ~ U ( x  "t ) / t)x a # 0 

Hence, allowing for the additive sum of tensor terms of the components with ga4(~ v) along each 
coordinate line L, one can write 

1 3U 
g~, = - - ' c  ~.-g-+ g~,4(~') (12) 

c o x -  

and instead of formula (9), we deduce from (12) that on L 

d$ 2 = c2d'~ 2 - 2 x-dUd'~ + 2ga4(~ v)d~adx + galsdxadx f~ 
c 

(13) 

But now, if aa # 0 along each line L-- the  coordinate line for global time x, it is true that dU = 0, 
and therefore 

ds  2 = c2d,  c 2 + 2ga4 (~v)d~Ctd, C + gal3 ( x~t, x)dxttdxl3 (14) 

The global forms of the function g~(x  r, x) in constructions of the metric may be assumed to be 
the same for some L or different for different L. The space metrics (9) in GRT and (14) in the 
general case cannot be transformed to synchronous form. However, given a function U(xV), which is 
different for different individual points, the motion will take place according to laws defined by Eqs 
(11). It is very important to emphasize that all the relationships obtained above are mathematically 
valid for arbitrary given functions U(xr). Therefore, in order to obtain specific solutions, one must still 
specify equations to define the potential energy density U(L) = U(xV). 

In Newtonian mechanics, one uses for U(x r) the law of universal gravitation, which has been verified 
by direct experiments, by a great many results of observations of the motion of masses in celestial 
mechanics and, in particular, in cases of large four-dimensional accelerations of motion of individual 
objects. 

In a theory of "pure gravitation" it is not possible to obtain physical intersections or tangencies of 
different L lines, when one must construct complicated models taking into account different contact 
interactions of individuals. 

The arbitrariness of the function U(x r) in the metric (13) indicates that the equations of GRT are 
not closed, as they are derived without explicit allowance for the law of universal gravitation with the 
postulated hopes that it should be possible to replace accelerations in Minkowski space by curvatures 
of pseudo-Riemann spaces. 

Some attempts have been made to prove the assumption that effects of curved pseudo-spaces are 
automatically compatible as a substitute for accelerated motions in Newtonian mechanics; these attempts 
cannot be considered to be correct [2]. 

It is easily shown that, if rotation occurs relative to the inertial tetrads of individual particles (in the 
general case, when the velocity fields are rotational), when rot u(~ v) = 2o~ = cons t ,  0 on L, which is 
due to the presence of a constant angular momentum (e.g. for rotating stars or planets), it is impossible 
to reduce the transformations of comoving metrics (9) and (14) to a synchronous form. 

It is obvious that if to(~ v) ~ 0 because of rotation in orbits of individual bodies, additional four- 
dimensional accelerations of individual objects will arise owing to the presence of constant angular 
momenta. 

There are obviously examples of the motion of stellar and planetary systems in which the geodesic 
property of the orbits may be substantially violated because the stars and planets possess large angular 
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momenta and because there is an additional potential energy density in the expression for the function 

To obtain data about the metric and about the laws of  motion of  individuals for given observers on 
the basis of the theory presented above, it is necessary to derive a preliminary solution in comoving 
frames of reference and then to recalculate the solutions, using an algorithm of inertial navigation in 
pseudo-Riemannian spaces [4]. 

In view of the theory developed here, the universality of the use of Minkowski space in present-day 
physical theories (as is actually employed in practical applications in physics and engineering), like 
Newtonian theory, is obviously natural and desirable for applications in many physical models, as is 
actually corroborated in actual applications. 

A P P E N D I X  

To clarify the essence of a model theory of the mechanics of gravitation in relativity theory it will be useful to note 
the following relationships. 

In any four-dimensional pseudo-Riemannian space one can introduce comoving Lagrange coordinates and 
coordinate lines L for an invariant global time variable with x ~ 0 on the L lines, and coordinates of individual 
points ~1, g2, ~3 with a non-uniquely defined comoving metric of the form 

ds2 = c2d'~2 + 2get4 (~Y,'Qa~{Xd'l + gall (~Y,'0d~aa~ II (A1) 

As is well known, the field equations in the theory of gravitation are 

with a constant k =: 8~Gc -4 = 2.07 × 10 --48 s2/(g cm), where the vector field of the four-dimensional velocity 

U = u k 3 k = u p 3 P  for l u l = c  

points along the taJagent at points of the coordinate lines L. 
Attention should be directed to the validity of the following equations for any m and k 

gk4~k~ 4 = T and VmT = V4T = 0 (i.e. V4gk4 = 0) 

cgk4 ak = a and V4Cgk4 = V4Uk = ak, generally speaking, for ak ~ O. 

Now, reasoning ixi GRT, it follows from (A2) and from the Bianchi conditions that always 

0 

and therefore it fol}Lows from equations (A2) on the L lines holonomically or in Fermi variables non-holonomically 
that 

vj puSui = uivj pus + puSVj u~ = 0, u 4 = e, ~ -- 0 

The law of conservation of mass for individuals gives Vj (pu #) = 0, so that on coordinate lines L, for variables r, 
one obtains V~i = 0 or u = const, and, consequently, free motion of all individual points is inertial, the L lines 
are geodesics and therefore the force ofgravity is generally absent. This is the main conclusion as to weightlessness 
in the theory of gr~Lvitation of GRT. 

In Newtonian mechanics one has a potential energy, and weightlessness follows from the balance of the 
gravitational force and the inertial force on L, holonomically in variables ~a, x or non-holonomically in Fermi 
variables x ~, x 

P - m g = O  

where g -- a is the acceleration due to gravity, which is absolute or relative (e.g. for astronauts) when the relative 
velocity is zero. 

Next, after suitable contractions and conditions imposed on the comoving coordinates, using (A2), it follows that 

_c2 R 4 = c2 R I 2 = .-4r~pG ( ~ )  

Independently of Eqs (A2) and their corollaries (A3), the energy equation in the theory of gravitation must involve 
, 2 not only the energ) mc but also a potential energy scalar mU. 
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Regardless of the validity of the usual inequality U ,~ c 2, both in natural phenomena and in engineering problems, 
the potential energy is of fundamental importance, due to which it is possible to construct celestial mechanics for 
the Newtonian theory of gravitation and in Minkowski space in SRT. 

We know that if a scalar density is introduced for the potential energy in comoving coordinates on each L line, 
then U(~ 1, ~2, ~3) = U(xlxZx 3) for individual bodies in the theory of gravitation. 

On the basis of a great many experiments, the function U may be specified in terms of finite formulae or 
equivalently by means of Poisson's equation 

AU:--4~pG (A4) 

In vacuous volumes, with p = 0, the function U for separate moving test particles is harmonic. 
Equation (A4) must be considered as an addition to the system of non-closed equations (A2). 
For spaces that are topologically equivalent to Minkowski space with Fermi coordinates, the solutions of the 

scalar Poisson's equations (A4) for scalars U(x r) with given p(x r) are independent of the metric. A suitable function 
U(x r) in the comoving metric [ 1] may be chosen arbitrarily, since dU = 0 on every L line. It is obvious that a pseudo- 
Riemannian space in GRT is defined by any metric 

(AS) 

with embedded terms that depend on U(xr). 
It is obvious that only in vacuous volumes, for which R~ = 0, R = 0 and AU = 0, can one pose the question of 

whether equalities (A3) and (A4) are compatible. In that case too, however, it follows from (A3) that the orbits 
are geodesics, while according to (A4) and (A5) accelerated motions appear in the corresponding orbits. Therefore, 
for every fixed solution in the Newtonian theory of gravitation or in S I ~  it is impossible to consider corresponding 
orbits as mathematical limits of corresponding geodesic lines L; this is particularly important for large intervals 
of proper time x. 

This research was carried out  with fmanda l  s u p p o ~  f rom the Russian Founda t ion  for Basic Research 
(93-01-17341). 
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